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BISPECTRA AND PHASE CORRELATIONS FOR CHAOTIC
DYNAMICAL SYSTEMS

ALLAN K. EVANS, STUART J. NIMMO AND MARK D. LONDON

Department of Mathematical Sciences, De Montfort University, The Gateway, Leicester
LEI 9BH, UK. E-mail: ake@dmu.ac.uk

The bispectrum is the natural third-order generalisation of the power spectrum. It
provides information about correlations between different Fourier components of a
signal or image, and about the statistics of Fourier phase. A number of numerical
and experimental studies of the bispectra of chaotic systems have been published.
In this paper we present the first analytical calculations of the bispectra of chaotic
dynamical systems. First, for a generalisation of the classical sawtooth or Renyi
map, we calculate the bispectrum using symbolic dynamics. Also, for intermittent
systems, we calculate the bispectrum using the relationship between these systems
and renewal processes. We review the results of these calculations, drawing some
conclusions about the characteristic features of the bispectra of chaotic systems,
and compare them with the features of some financial time series.

Key words: Chaos, bispectrum, time series, intermittent, finance.

1 Introduction: power spectrum and phase in time-series analysis

Given an experimental time series xt, what can we say about the nature of the
system that produced it? This is a question commonly encountered by experimental
scientists, and also by those who deal with financial time series such as stock prices
or currency exchange rates. Often the first attack at the question is to calculate the
power spectrum P(w). The power spectrum reveals how the variance, or power, in
the time series is shared between the different frequencies w.

Because the power spectrum contains no phase information, it is not possible to
reconstruct the original signal xt from it, and there are some questions that can not
be answered by inspecting only the power spectrum. One of these is the question
of whether an apparently random signal originates from chaos in a low-dimensional
deterministic dynamical system or from a stochastic process. 1,2

The Fourier transform
Jr(w) x-- e"'.. Zxte wt(1)

t

contains the same information as the original signal, and r can be written in terms
of a modulus and a phase:

(w) = (w)I e (2)

where the modulus Ii( w)I determines the power spectrum. To go beyond the power
spectrum while still using the concepts of Fourier analysis, one should therefore
consider the statistics of the Fourier phase O(w). In fact, the phase is more impor-
tant in determining the appearance of an image than the Fourier modulus or power
spectrum.3 All information about the location of features in an image or the time
of occurrence of features in a signal is contained in the phase.
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It is not straightforward to study the statistics of phase in a time series. One
advantage of the power spectrum is that it is a well-defined statistical average,
being the Fourier transform of the autocorrelation function. However, stationary
stochastic processes (including those defined by a chaotic dynamical system with
its invariant measure) do not possess a well-defined average phase O(w) or eio(w)

for any frequency w.
We can understand why the Fourier phase factor ei€W() does not have an average

value for a stationary process by noting that translating the original time series by
a delay s (that is, replacing xt by x(t-,)) is equivalent to multiplying each Fourier
phase factor by eiCs. This is just a restatement of the 'shift theorem' of Fourier
analysis. Since any time-average of a stationary process must be invariant under a
time-shift, this explains why the phase factor does not have a well-defined average.

This argument also provides a hint of how we might construct well-defined
average quantities that contain phase information. For any two frequencies w, and
W2, the phase product

R(wl, W2 ) = ei¢(w1) ei¢(w2) e-i(W1 +W2) (3)

is invariant under a translation. A non-zero average of this quantity implies that the
phases of the Fourier components at frequencies wl, w2 and w, + w 2 are correlated.

In fact, the mean value of R is the phase of the bispectrum,4, 5 evaluated at the
frequencies (Wl , W2 ). Just as the power spectrum P(w) is the Fourier transform
of the autocorrelation function, the bispectrum P(wI, w2 ) is the double Fourier
transform of the bi-correlation function

Cx (s, t) = ((x, - -) (xt - x) (X0 - x)) , (4)

where the angled brackets () denote an expectation value.
The bispectrum can also be estimated directly from the Fourier transform:

P(W l ,W 2 ) = lim I (i1T(WI) T(W2)4(W1 +W 2 ) (5)
T-*cc 2T

where the subscript T implies that the sum in equation (1) is over the first T
samples in the time series, and * denotes complex conjugation.

Higher-order generalisations of the power spectrum, known as polyspectra, can

also be defined4' 5 . The bispectrum has been applied in time-series analysis to con-
struct tests6' 7',for nonlinearity and for normality (meaning the presence of a normal
distribution). These tests depend upon the observations that for normal systems,
the bispectrum is zero, and for linear systems (that is, processes constructed by a
linear operator acting upon an i.i.d. process) the bicoherence

b(wi, W2 ) = 'IP(wI,W2)12  (6)
P(w1)P(w2 )P(w1 + w 2)

is constant.
The bispectrum has also been used to study phase correlations and the in-

teractions between Fourier components in many experimental systems, including
electroencephalographic signals from the human brain,9 and the oscillations of the
earth. 10 A number of authors' 1 1"12" 3 have studied the bispectra of time series
from chaotic dynamical systems, either by numerical simulation or experimental
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Figure 1. Symmetries of the bicorrelation function. For example, if the bicorrelation is given by
f(s, t) in the region A, then the bicorrelation in region C is given by f(t - s, s).

measurement. Subba Rao8 identified 'ridges' in the bicoherence as a characteristic
of chaotic systems, and other authors studying electrical circuits have noted vari-
ous changes in the bispectral characteristics of time series as the systems generating
them make the transition to chaos.

To date, there are no published examples of chaotic dynamical systems where
the bispectrum can be calculated exactly. In this paper we present an example of
such a calculation, for a simple discrete-time system which is a generalisation of the
well-known saw-tooth or Renyi map. We also show how the relationship between
intermittent chaotic systems and renewal processes can be used to give asymptotic
low-frequency expressions for the bispectra of intermittent systems. We identify
some common features of these two families which may be bispectral character-
istics of chaos. Finally, we compare some financial time series with the chaotic
examples. Before presenting the calculations, we briefly review some properties of
the bicorrelation function and bispectrum.

2 Symmetries of the bicorrelation function and calculation of the
bispectrum

This section summarises some properties of the bicorrelation function and bispec-
trum that are useful in deriving the form of the bispectrum. From its definition in
equation (4), one can see that, for a stationary process, the bicorrelation function
Cx (s, t) has the symmetries

C,ý (s, t) = c,: (t, 8) c,: (- S, t) = cý (s, s + t). (7)

By composing these symmetry operations, one can reach any part of the (s, t) plane
from the region 0 < s < t where the bicorrelation is most easily calculated. These
relationships are summarised in figure 1.

The bispectrum P(wl,w2 ) is defined as the double Fourier transform of the
bicorrelation function, the Fourier integral being evaluated over the entire (8, t)
plane. Let PA (WI, W2) be the integral over only region A in figure 1. If the value of
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Figure 2. The two types of dynamical system considered in this paper: the generalised sawtooth
map (left) with b = 0.3, and the intermittent dynamical system described by equation (28) with
L = 1, z = 2.7.

the bicorrelation in region A is given by C, (s, t) /3(s, t), then

PA(wl,w2) : ds f dt 03(s,t)ei(swl+tw2). (8)

Similarly, the integral over region B is/0 00
PB(W1,wU2) = ds dt C:(s, t)ez(SLl+tW2). (9)

Using the symmetries in equation (7), and changing the variables of integration,
one can show that

PB(W01,W 2 ) = PA(--(W1 + W 2 ), W 2 ). (10)

Similar relationships can be derived between PA and the Fourier integrals over the
other regions in figure 1. The bispectrum can then be calculated by summing all
the integrals. The result is

P(P1, W 2 ) = PA(W1, W2 ) + PA(--(W1 + W 2 ), W2 ) + PA(Wl,--(W1 + W 2 )), (11)

where the hat operation - denotes symmetrisation:

A(x, y) = f(x, y) + f(Y, x). (12)

3 The generalised sawtooth map

3.1 The dynamical system

Our first dynamical system is defined by the mapping of the interval (0, 1) onto
itself

/(x) •-bx < b (3
fW _b x > b(13)

as pictured in Figure 2. The dynamical system xt+l = f(xt) has a uniform invariant
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distribution. It is chaotic, with Lyapounov exponent

A = -blnb - (1 - b)ln(1 - b) (14)

easily calculated by standard methods. 14

This dynamical system is a generalisation of the sawtooth or Renyi map which
has been studied by many authors. 14 When b = 1/2, the two systems are identical.
This generalisation makes the study of the system more difficult, but it is necessary
in this case because when b = 1/2, the system's bispectrum is zero. This is an
effect of the symmetry of the function f. Sakai and Tokumaru 15 have calculated
the autocorrelation function of the b = 1/2 system using a relationship between
this system and an autoregressive process.

3.2 Symbolic dynamics

The method we use to study this system is symbolic dynamics 14, where a sequence

of symbols from a discrete and finite alphabet represents a trajectory of a dynamical
system. The representation for the generalised sawtooth map is not difficult to

derive. Suppose that x 0 and x, are two successive points in the trajectory of the
system, so that x, = f(xo). Then we have either

xo = bxl (15)

or, if xO > b,

xo = b + (1 - b)xl. (16)

Putting z, = 0 in the first case, and z, = 1 in the second, we can write

xo = z1 b + x 1 el, (17)

where ei = (b - 2zib + zi). Continuing along the same lines, we obtain

xo = zib + el(Z 2 b + e 2 (z 3 b + e 3x 3 ))
n

= be 1e 2 ... e-lX + b ele2 .ek-lZk (18)
k=1

It is easy to show that, under the (uniform) invariant measure, the zi are indepen-
dent random variables, taking the values 0 or 1 with probabilities b and (1 - b)
respectively. We can therefore use this representation to calculate various averages.
For example, in the next section we calculate the autocorrelation function and the
power spectrum.

3.3 The power spectrum

Multiplying equation (18) by x, we obtain

n
22

Xoxn = bele 2 ... en-l xn + b •e1 e ek-l ZkXn.

k=1
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We can now take the expectation value, using the fact that random variables with
different subscripts are independent, and the expectation values (zi) = (I -b),
(zi) = (1 - b), (xi) = 1/2, (x?) = 1/3 and

(el) = b2 (1 - b)2 = B, (20)

(e2) = b3 + (1 - b)3 = C, (21)

(22)

After summing a geometric series, we obtain

1 Bn
(XoX) = 1 + -B. (23)

4 12

This equation is valid for n > 0. The autocorrelation function is therefore

C.(t) = (XoXt) - (x2) -BI t  (24)

The power spectrum is the Fourier transform of this function (using the convention
of equation (1)):

1+ B2
P(w) = 12(1+ B 2 - 2Bcos0)" (25)

3.4 The bispectrum

The same methods can be used to calculate the three-point average (xox 8 xt) when
0 < s < t. We can then calculate the bicorrelation function. The details of this
calculation occupy far too much space to be recorded here. The result is, again for
0 <s <t,

C•(s,t) - (1 12b) (Bt - BSCts)' (26)

where B and C are defined in equations (20) and (21). The bispectrum can now
be calculated using the method described in the last section. The result is given by
equation (11), with

(2b - 1)(b - 1)be-(7
PA(X,y) = 12 (1 - Be-iý) (1 - Ce-ix) (1 - BeiY) (27)

Contour diagrams of the bispectrum and bicorrelation function for a typical
value of b are shown in figure 3. The 'ridges' found by Subba Rao8 are not evident
for this system for any value of b that we have examined. The most noticeable
consistent feature is that the energy in the bispectrum is spread over a broad
ranges of frequencies rather than being concentrated into narrow bands. This may
be a characteristic of fully-developed chaos.
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Figure 3. The bispectrum for the sawtooth map with b = 0.27. The left graph shows a surface
map of the modulus of the bispectrum, evaluated over the region where w, and w2 are positive.
The right graph shows a direction field displaying the complex phase of the bispectrum overlaid
with a contour map, evaluated over both positive and negative frequencies.

4 Intermittent dynamical systems

In this section, we study the bispectra of a class of intermittent dynamical systems.
For definiteness, we take as our model the system defined by the mapping

f(x) = (x + pxz) mod 1, (28)

shown in figure 2 for y = 1, z = 1.7. The analysis given here depends only on the
form of f(x) close to the intermittent point at x = 0, and so applies to a broad
class of intermittent dynamical systems, 14 as described by Ben-Mizrachi et al. 6

The defining characteristic of these intermittent systems is that they show brief
periods of random behaviour between long periods when the system is 'stagnant',
remaining close to the centre of intermittency (in the case of the model system
above, close to the point x = 0).

We will be studying the long-time behaviour, or equivalently the low-frequency
behaviour, of these dynamical systems. For this purpose, following Ben-Mizrachi et
al,16 we replace the dynamical system's time series xt by a series of delta-functions
located at the times of escape from periods of stagnation. The dynamical system
is thus replaced by a renewal process with waiting-time distribution defined by the
distribution of waiting times between escape events. As Ben-Mizrachi et a1

16 show,
this distribution can be approximated for large r by

PT(T){ (a )t--lt > 1 (29)

where at = z/(z - 1). Ben-Mizrachi et al 16 also show that the function c(t) giving
the probability of an escape event at time t given the occurrence of such an event
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at time 0 is given by

1
( 1-(s)' (30)

where the bar - denotes the Laplace transform. The Laplace transform of Pr is an
incomplete Gamma function,17 whose small-s behaviour is given by

I - p,(s) s- -'F(2 - a) (31)

for 1 < a < 2. For the sake of brevity, we consider only this case (corresponding
to z > 2) in this paper. Other cases will be covered in a longer paper currently in
preparation.

For the case 1 < a < 2, for small s we have a(s) ,-, r(2 - a)s1-', and the

low-frequency behaviour of the power spectrum16 is given by

P(w) = I(iw) + 6(-iw)I2 _ constant
w2__ 2 . (32)

The bispectrum can also be calculated from E(s). First, note that for large t1
and (t 2 - t,) and for 0 < tl < t2 ,

(xtl xo) - c(00)c(t ). (33)

and

(XtlXt 2 XO) "- C(oo)C(•tI)c(t2 - t,). (34)

The bicorrelation Cx (tl, t 2 ) is therefore given by

Cx (t1, t) = c(oo)c(t1)c(t 2 - t) - c(oo) 2 (c(tl) + c(t 2 ) + c(t2 - ti)) + 2c(oo)3. (35)

After applying the double Laplace transform and taking the limit s -+ 0, we find
that the first term dominates and

x(s1,s 2 ) , C(oo) (36)
( 2 (2 - a)s'-i (S2 - S1))C-1

By setting s, = iw 1 , S2 = iw2, we obtain an expression for the bispectrum integral
PA:

PA(WI, W) C (0) (7
rF

2 (2 - a) (iw, (w2 - W1)) (37)

The bispectrum is then given by equation (11).
Bispectra calculated numerically from time series generated directly by the dy-

namical system (28) are in good agreement with this result, although a large number
of data points is required for the average to converge to a smooth function. Figure
4 shows the result of one comparison.

The structure of these low-frequency bispectra is simple. They show power-law
singularities at the lines w, = 0, w2 = 0 and w, + W2 = 0. Like the bispectra for

the sawtooth map, the bispectra for intermittent systems (at least at low frequen-
cies) show no isolated peaks. Intensity extends across a wide range of frequencies
modulated by a power-law envelope.
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Figure 4. The theoretical treatment given in this paper predicts that the function P(wi, 0) should
diverge as w-2(1-a) as w, -- 0. This graph shows the theory (solid line) and values of a numeri-

cally calculated bispectrum using 10000 data points of a time series generated by the dynamical
system of equation (28) for z = 2.1 (a = 1.909).

These results suggest that bispectral measurements may be useful in cases where
it is difficult to distinguish power-law noise from a dynamical system' 6' 2 from noise
from a truly random source, such as filtered white noise. White noise retains its
random phases when passed through a linear filter, and so has zero bispectrum.

5 Bispectra of financial time series

The bispectra of economic time series were first computed by Godfrey,18 who was

able to reject the null hypothesis of linearity for a number of stock price time series,
but did not discuss other aspects of the bispectral form. For comparison with the
other examples presented here, we calculated the bispectrum of the log-increments
Yn = log(x /xn--1) of the Dow Jones Industrial Average stock market index, eval-
uated daily over the period January 1994 to February 1999. The bispectrum was
estimated from the bicorrelation using a Parzen window, as in the work of Subba
Rao and Gabr7 . The result (figure 5) shows broad spectral intensity, as for the two
chaotic examples presented here, but concentrated more at higher frequencies. This
shift towards higher frequencies is probably a result of taking the log-increments,

which is effectively a differentiation process.

6 Conclusion

One recognised characteristic of chaotic dynamical systems is that they show a
continuous power spectrum, with intensity distributed across a wide range of fre-
quencies. The results of this paper show that, at least in some cases, this is also

true of their bispectra. This provides a way of distinguishing a chaotic time series
from filtered white noise. However, other classes of processes share this charac-
teristic of broad-band bispectral intensity. This is clear because the bispectra for

the intermittent systems in this paper were calculated by exploiting the similarity
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Figure 5. The left-hand graph shows the modulus of the bispectrum for the log-increments of the
Dow Jones industrial average stock index (values shown on the right).

between these systems and renewal processes. A broad-band bispectrum can not
therefore be taken as an unambiguous sign of chaos. A broad-band bispectrum
does indicate interactions between Fourier modes over a wide range of frequencies,
and is therefore a sign that the system studied does not have a simple description
in the Fourier domain. The broad-band character of the bispectra of financial time
series should therefore be taken as an indication of the complexity of the underlying
processes.

The authors would like to thank Abby Evans, Martin Turner and
Ursula Augsd~rfer for help with the production of this paper.
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